Перпендикулярные и параллельные прямые

На плоскости

Две прямые на плоскости называются перпендикулярными, если при пересечении образуют 4 прямых угла.

В аналитическом выражении прямые, заданные линейными функциями и будут перпендикулярны, если выполнено условие . Эти же прямые будут перпендикулярны, если . (Здесь — углы наклона прямой к горизонтали)

https://www.youtube.com/watch?v=ytadvertiseru

Для обозначения перпендикулярности имеется общепринятый символ: , предложенный в 1634 году французским математиком Пьером Эригоном.

Перпендикулярные и параллельные прямые
Перпендикулярные и параллельные прямые

Построение перпендикуляра

Шаг 1: (красный) С помощью циркуля проведём полуокружность с центром в точке P, получив точки А’ и В’.

Шаг 2: (зелёный) Не меняя радиуса, построим две полуокружности с центром в точках A’ и В’ соответственно, проходящими через точку Р. Кроме точки Р есть ещё одна точка пересечения этих полуокружностей, назовём её Q.

Шаг 3: (синий) Соединяем точки Р и Q. PQ и есть перпендикуляр к прямой АВ.

A(xa,ya) и B(xb,yb) — прямая, O(xo,yo) — основание перпендикуляра, опущенного из точки P(xp,yp).

Если xa = xb (вертикаль), то xo = xa и yo = yp. Если ya = yb (горизонталь), то xo = xp и yo = ya.

Во всех остальных случаях

xo = (xa*(yb-ya)^2 xp*(xb-xa)^2 (xb-xa) * (yb-ya) * (yp-ya)) / ((yb-ya)^2 (xb-xa)^2);
yo = (yb-ya)*(xo-xa)/(xb-xa) ya.

Перпендикулярные прямые – основные сведения.

Перпендикулярными прямыми называются прямые, которые располагаются на одной плоскости и пересекаются под прямым углом.

Прямой угол равен $90^о$.

Перпендикулярными могут быть не только прямые, но и лучи, и отрезки.

Рассмотрим прямоугольник и квадрат. В них все углы прямые, т.е. равны 90о. Следовательно, соседние стороны каждой и этих геометрических фигур перпендикулярны между собой.

Для построения прямого угла, например, в школьной тетради, можно использовать чертежный треугольник, у которого один из углов равен $90^circ$. Также можно воспользоваться транспортиром: провести ровную линию, отметить точку возле цифры $90$ и построить проекцию из этой точки на проведенную прямую. Самый простой способ – нарисовать перпендикулярные прямые по клеточкам в тетради, т.к. они имеют форму квадрата со сторонами, которые располагаются под прямым углом.

Прямые, которые пересекаются под прямым углом, называются перпендикулярными прямыми.

https://www.youtube.com/watch?v=playlist

Перпендикулярные прямые сокращенно в математике обозначают с помощью специального знака «perp». Например, тот факт, что прямая $AB$ перпендикулярна относительно прямой $MN$ записывается как $AB perp MN$.

Если $AB perp MN$, то $MN perp AB$.

Отрезки (или лучи), которые лежат на перпендикулярных прямых, называются перпендикулярными отрезками (или лучами).

Перпендикулярные и параллельные прямые

Угол между пересекающимися прямыми на плоскости и в трехмерном пространстве может быть равен девяноста градусам. В этом случае говорят, что прямые пересекаются под прямым углом, а прямые называют перпендикулярными. Если угол между скрещивающимися прямыми в трехмерном пространстве равен , то скрещивающиеся прямые также называют перпендикулярными.

Отметим, что фразы «прямые a и b перпендикулярны» и «прямые b и a перпендикулярны» равноправны. Поэтому можно слышать, что перпендикулярные прямые называют взаимно перпендикулярными.

Учитывая все сказанное, дадим общее определение перпендикулярных прямых.

Определение.


Две прямые называются перпендикулярными, если угол между ними равен .

Для обозначения перпендикулярных прямых используют знак перпендикулярности вида «». То есть, если прямые a и b перпендикулярны, то кратко записывают . На чертежах угол между перпендикулярными прямыми отмечают значком прямого угла вида «».

В качестве примера перпендикулярных прямых на плоскости можно привести прямые, на которых лежат стороны квадрата с общей вершиной. В прямоугольной системе координатOxyz в трехмерном пространстве координатные прямые Ox и Oz, Ox и Oy, Oy и Oz перпендикулярны.

В многомерных пространствах

Перпендикулярность плоскостей в четырёхмерном пространстве имеет два смысла: плоскости могут быть перпендикулярны в 3-мерном смысле, если они пересекаются по прямой (а следовательно, лежат в одной гиперплоскости), и двугранный угол между ними равен 90°.

Плоскости могут быть также перпендикулярны в 4-мерном смысле, если они пересекаются в точке (а следовательно, не лежат в одной гиперплоскости), и любые 2 прямые, проведённые в этих плоскостях через точку их пересечения (каждая прямая в своей плоскости), перпендикулярны.

В 4-мерном пространстве через данную точку можно провести ровно 2 взаимно перпендикулярные плоскости в 4-мерном смысле (поэтому 4-мерное евклидово пространство можно представить как декартово произведение двух плоскостей). Если же объединить оба вида перпендикулярности, то через данную точку можно провести 6 взаимно перпендикулярных плоскостей (перпендикулярных в любом из двух вышеупомянутых значений).

Существование шести взаимно перпендикулярных плоскостей можно пояснить таким примером. Пусть дана система декартовых координатx y z t. Для каждой пары координатных прямых существует плоскость, включающая эти две прямые. Количество таких пар равно : xy, xz, xt, yz, yt, zt, и им соответствуют 6 плоскостей.

Пусть задано n-мерное евклидово пространство (n{amp}gt;2) и ассоциированное с ним векторное пространство , а прямая l с направляющим векторным пространством и гиперплоскость с направляющим векторным пространством (где , ) принадлежат пространству .

Перпендикулярные и параллельные прямые

Прямая l называется перпендикулярной гиперплоскости , если подпространство ортогонально подпространству , то есть

Перпендикулярность прямых — условия перпендикулярности.

Перпендикулярные прямые фигурируют чуть ли не в каждой геометрической задаче. Иногда перпендикулярность прямых известна из условия, а в других случаях перпендикулярность прямых приходится доказывать. Для доказательства перпендикулярности двух прямых достаточно показать, используя любые геометрические методы, что угол между прямыми равен девяноста градусам.

А как ответить на вопрос «перпендикулярны ли прямые», если известны уравнения, задающие эти прямые в прямоугольной системе координат на плоскости или в трехмерном пространстве?

Для этого следует воспользоваться необходимым и достаточным условием перпендикулярности двух прямых. Сформулируем его в виде теоремы.

Теорема.


Для перпендикулярности прямых a и b необходимо и достаточно, чтобы направляющий вектор прямойa был перпендикулярен направляющему вектору прямой b.

Доказательство этого условия перпендикулярности прямых основано на определении направляющего вектора прямой и на определении перпендикулярных прямых.

Добавим конкретики.

Пусть на плоскости введена прямоугольная декартова система координат Oxy и заданы уравнения прямой на плоскости некоторого вида, определяющие прямые a и b. Обозначим направляющие векторы прямых а и b как и соответственно. По уравнениям прямых a и b можно определить координаты направляющих векторов этих прямых – получаем и .

Итак, необходимое и достаточное условие перпендикулярности прямыхa и b в прямоугольной системе координат Oxy на плоскости имеет вид , где и — направляющие векторы прямых a и b соответственно.

Это условие удобно использовать, когда легко находятся координаты направляющих векторов прямых, а также когда прямым a и b соответствуют канонические уравнения прямой на плоскости или параметрические уравнения прямой на плоскости.

Пример.


В прямоугольной системе координат Oxy заданы три точки . Перпендикулярны ли прямые АВ и АС?

Решение.


Векторы и являются направляющими векторами прямых АВ и АС. Обратившись к статье координаты вектора по координатам точек его начала и конца, вычисляем . Векторы и перпендикулярны, так как . Таким образом, выполняется необходимое и достаточное условие перпендикулярности прямых АВ и АС. Следовательно, прямые АВ и АС перпендикулярны.

Ответ:


да, прямые перпендикулярны.

Пример.


Являются ли прямые и перпендикулярными?

Решение.

— направляющий вектор прямой , а — направляющий вектор прямой . Вычислим скалярное произведение векторов и : . Оно отлично от нуля, следовательно, направляющие векторы прямых не перпендикулярны. То есть, не выполняется условие перпендикулярности прямых, поэтому, исходные прямые не перпендикулярны.

Ответ:


нет, прямые не перпендикулярны.

Аналогично, необходимое и достаточное условие перпендикулярности прямыхa и b в прямоугольной системе координат Oxyz в трехмерном пространстве имеет вид , где и — направляющие векторы прямых a и b соответственно.

Пример.


Перпендикулярны ли прямые, заданные в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями и ?

Решение.


Числа, стоящие в знаменателях канонических уравнений прямой в пространстве, являются соответствующими координатами направляющего вектора прямой. А координатами направляющего вектора прямой, которая задана параметрическими уравнениями прямой в пространстве, являются коэффициенты при параметре. Таким образом, и — направляющие векторы заданных прямых. Выясним, перпендикулярны ли они: . Так как скалярное произведение равно нулю, то эти векторы перпендикулярны. Значит, выполняется условие перпендикулярности заданных прямых.

Ответ:


прямые перпендикулярны.

Для проверки перпендикулярности двух прямых на плоскости существуют другие необходимые и достаточные условия перпендикулярности.

Теорема.


Для перпендикулярности прямых a и b на плоскости необходимо и достаточно, чтобы нормальный вектор прямой a был перпендикулярен нормальному вектору прямой b.

Озвученное условие перпендикулярности прямых удобно использовать, если по заданным уравнениям прямых легко находятся координаты нормальных векторов прямых. Этому утверждению отвечает общее уравнение прямой вида , уравнение прямой в отрезках и уравнение прямой с угловым коэффициентом.

Пример.


Убедитесь, что прямые и перпендикулярны.

Решение.


По заданным уравнениям прямых легко найти координаты нормальных векторов этих прямых. – нормальный вектор прямой . Перепишем уравнение в виде , откуда видны координаты нормального вектора этой прямой: .


Векторы и перпендикулярны, так как их скалярное произведение равно нулю: . Таким образом, выполняется необходимое и достаточное условие перпендикулярности заданных прямых, то есть, они действительно перпендикулярны.

Пример.


Перпендикулярны ли прямые и ?

Решение.


Угловой коэффициент прямой равен , а угловой коэффициент прямой равен . Произведение угловых коэффициентов равно минус единице , следовательно, прямые перпендикулярны.

Ответ:


заданные прямые перпендикулярны.

Можно озвучить еще одно условие перпендикулярности прямых на плоскости.

Теорема.


Для перпендикулярности прямых a и b на плоскости необходимо и достаточно, чтобы направляющий вектор одной прямой и нормальный вектор второй прямой были коллинеарны.

Этим условием, очевидно, удобно пользоваться, когда легко находятся координаты направляющего вектора одной прямой и координаты нормального вектора второй прямой, то есть, когда одна прямая задана каноническим уравнением или параметрическими уравнениями прямой на плоскости, а вторая – или общим уравнением прямой, или уравнением прямой в отрезках, или уравнением прямой с угловым коэффициентом.

Пример.


Являются ли прямые и перпендикулярными?

Решение.


Очевидно, — нормальный вектор прямой , а — направляющий вектор прямой . Векторы и не коллинеарны, так как для них не выполняется условие коллинеарности двух векторов (не существует такого действительного числа t, при котором ). Следовательно, заданные прямые не перпендикулярны.

Ответ:


прямые не перпендикулярны.

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Некогда разбираться?

https://www.youtube.com/watch?v=upload

Закажите решение

Примечания

  1. Александров А.Д., Вернер А. Л., Рыжик В.И. Стереометрия. Геометрия в пространстве. — Висагинас: Alfa, 1998. — С. 46. — 576 с. — (Библиотека школьника). — ISBN 9986582539
Понравилась статья? Поделиться с друзьями:
Семейный портал