Сокращение алгебраических дробей: правило, примеры.

Смысл сокращения алгебраической дроби

В материалах об обыкновенной дроби мы рассматривали ее сокращение. Мы определили сокращение обыкновенной дроби как деление ее числителя и знаменателя на общий множитель.

Сокращение алгебраической дроби представляет собой аналогичное действие.

Определение 1

Сокращение алгебраической дроби – это деление ее числителя и знаменателя на общий множитель. При этом, в отличие от сокращения обыкновенной дроби (общим знаменателем может быть только число), общим множителем числителя и знаменателя алгебраической дроби может служить многочлен, в частности, одночлен или число.

К примеру, алгебраическая дробь 3·x2 6·x·y6·x3·y 12·x2·y2  может быть сокращена на число 3, в итоге получим: x2 2·x·y6·x3·y 12·x2·y2 . Эту же дробь мы можем сократить на переменную х, и это даст нам выражение 3·x 6·y6·x2·y 12·x·y2. Также заданную дробь возможно сократить на одночлен 3·xили любой из многочленов x 2·y, 3·x 6·y, x2 2·x·y или 3·x2 6·x·y.

Конечной целью сокращения алгебраической дроби является дробь более простого вида, в лучшем случае – несократимая дробь.

Все ли алгебраические дроби подлежат сокращению?

Опять же из материалов об обыкновенных дробях мы знаем, что существуют сократимые и несократимые дроби. Несократимые – это дроби, не имеющие общих множителей числителя и знаменателя, отличных от 1.

С алгебраическими дробями все так же: они могут иметь общие множители числителя и знаменателя, могут и не иметь. Наличие общих множителей позволяет упростить исходную дробь посредством сокращения. Когда общих множителей нет, оптимизировать заданную дробь способом сокращения невозможно.

В общих случаях по заданному виду дроби довольно сложно понять, подлежит ли она сокращению. Конечно, в некоторых случаях наличие общего множителя числителя и знаменателя очевидно. Например, в алгебраической дроби 3·x23·y совершенно понятно, что общим множителем является число 3.

В дроби -x·y5·x·y·z3 также мы сразу понимаем, что сократить ее возможно на х, или y, или на х·y. И все же гораздо чаще встречаются примеры алгебраических дробей, когда общий множитель числителя и знаменателя не так просто увидеть, а еще чаще – он попросту отсутствует.

Например, дробь x3-1×2-1  мы можем сократить на х-1, при этом указанный общий множитель в записи отсутствует. А вот дробь x3-x2 x-1×3 x2 4·x 4  подвергнуть действию сокращения невозможно, поскольку числитель и знаменатель не имеют общего множителя.

Таким образом, вопрос выяснения сократимости алгебраической дроби не так прост, и зачастую проще работать с дробью заданного вида, чем пытаться выяснить, сократима ли она. При этом имеют место такие преобразования, которые в частных случаях позволяют определить общий множитель числителя и знаменателя или сделать вывод о несократимости дроби. Разберем детально этот вопрос в следующем пункте статьи.

Правило сокращения алгебраических дробей

Правило сокращения алгебраических дробей состоит из двух последовательных действий:

  • нахождение общих множителей числителя и знаменателя;
  • в случае нахождения таковых осуществление непосредственно действия сокращения дроби.

Самым удобным методом отыскания общих знаменателей является разложение на множители многочленов, имеющихся в числителе и знаменателе заданной алгебраической дроби. Это позволяет сразу наглядно увидеть наличие или отсутствие общих множителей.

Само действие сокращения алгебраической дроби базируется на основном свойстве алгебраической дроби, выражаемой равенством undefined , где a,b,c – некие многочлены, причем b и c – ненулевые. Первым шагом дробь приводится к виду a·cb·c , в котором мы сразу замечаем общий множитель c. Вторым шагом – выполняем сокращение, т.е. переход к дроби вида ab .

Характерные примеры

55=1;-23-23=1;xx=1;-3,2·x3-3,2·x3=1;12·x-x2·y12·x-x2·y;  

и т.п.

https://www.youtube.com/watch?v=ytcopyrightru

Поскольку обыкновенные дроби являются частным случаем алгебраических дробей, напомним, как осуществляется их сокращение. Натуральные числа, записанные в числителе и знаменателе, раскладываются на простые множители, затем общие множители сокращаются (если таковые имеются).

сократить дробь 60 84

К примеру, 241260=2·2·2·32·2·3·3·5·7=23·5·7=2105

241260=23·322·32·5·7=23-232-1·5·7=2105  

241260=23·322·32·5·7=2322·332·15·7=21·13·135=2105

По аналогии осуществляется сокращение алгебраических дробей, у которых в числителе и знаменателе имеются одночлены с целыми коэффициентами.

Пример 1

Задана алгебраическая дробь -27·a5·b2·c·z6·a2·b2·c7·z . Необходимо произвести ее сокращение.

Решение

Возможно записать числитель и знаменатель заданной дроби как произведение простых множителей и переменных, после чего осуществить сокращение:

-27·a5·b2·c·z6·a2·b2·c7·z=-3·3·3·a·a·a·a·a·b·b·c·z2·3·a·a·b·b·c·c·c·c·c·c·c·z==-3·3·a·a·a2·c·c·c·c·c·c=-9·a32·c6

Однако, более рациональным способом будет запись решения в виде выражения со степенями:

-27·a5·b2·c·z6·a2·b2·c7·z=-33·a5·b2·c·z2·3·a2·b2·c7·z=-332·3·a5a2·b2b2·cc7·zz==-33-12·a5-21·1·1c7-1·1=·-32·a32·c6=·-9·a32·c6 .

Ответ:-27·a5·b2·c·z6·a2·b2·c7·z=-9·a32·c6

Когда в числителе и знаменателе алгебраической дроби имеются дробные числовые коэффициенты, возможно два пути дальнейших действий: или отдельно осуществить деление этих дробных коэффициентов, или предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на некое натуральное число.

Пример 2

Задана дробь 25·x0,3·x3. Необходимо выполнить ее сокращение.

Решение

Возможно сократить дробь таким образом:

25·x0,3·x3=25310·xx3=43·1×2=43·x2

Попробуем решить задачу иначе, предварительно избавившись от дробных коэффициентов – умножим числитель и знаменатель на наименьшее общее кратное знаменателей этих коэффициентов, т.е. на НОК (5, 10) = 10. Тогда получим:

25·x0,3·x3=10·25·x10·0,3·x3=4·x3·x3=43·x2 .

Ответ: 25·x0,3·x3=43·x2

Когда мы сокращаем алгебраические дроби общего вида, в которых числители и знаменатели могут быть как одночленами, так и многочленами, возможна проблема, когда общий множитель не всегда сразу виден. Или более того, он попросту не существует. Тогда для определения общего множителя или фиксации факта о его отсутствии числитель и знаменатель алгебраической дроби раскладывают на множители.

Пример 3

Задана рациональная дробь 2·a2·b2 28·a·b2 98·b2a2·b3-49·b3 . Необходимо ее сократить.

Решение

Разложим на множители многочлены в числителе и знаменателе. Осуществим вынесение за скобки:

2·a2·b2 28·a·b2 98·b2a2·b3-49·b3=2·b2·(a2 14·a 49)b3·(a2-49)

Мы видим, что выражение в скобках возможно преобразовать с использованием формул сокращенного умножения:

2·b2·(a2 14·a 49)b3·(a2-49)=2·b2·(a 7)2b3·(a-7)·(a 7)

Хорошо заметно, что возможно сократить дробь на общий множитель b2·(a 7). Произведем сокращение:

2·b2·(a 7)2b3·(a-7)·(a 7)=2·(a 7)b·(a-7)=2·a 14a·b-7·b

Краткое решение без пояснений запишем как цепочку равенств:

2·a2·b2 28·a·b2 98·b2a2·b3-49·b3=2·b2·(a2 14a 49)b3·(a2-49)==2·b2·(a 7)2b3·(a-7)·(a 7)=2·(a 7)b·(a-7)=2·a 14a·b-7·b

Ответ:2·a2·b2 28·a·b2 98·b2a2·b3-49·b3=2·a 14a·b-7·b.

Случается, что общие множители скрыты числовыми коэффициентами. Тогда при сокращении дробей оптимально числовые множители при старших степенях числителя и знаменателя вынести за скобки.

Пример 4

Дана алгебраическая дробь 15·x-27·x3·y5·x2·y-312 . Необходимо осуществить ее сокращение, если это возможно.

Решение

На первый взгляд у числителя и знаменателя не существует общего знаменателя. Однако, попробуем преобразовать заданную дробь. Вынесем за скобки множитель х в числителе:

15·x-27·x3·y5·x2·y-312=x·15-27·x2·y5·x2·y-312

Теперь видна некая схожесть выражения в скобках и выражения в знаменателе за счет x2·y. Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:

x·15-27·x2·y5·x2·y-312=x·-27·-72·15 x2·y5·x2·y-15·312==-27·x·-710 x2·y5·x2·y-710

Теперь становится виден общий множитель, осуществляем сокращение:

-27·x·-710 x2·y5·x2·y-710=-27·x5=-235·x

Ответ:15·x-27·x3·y5·x2·y-312=-235·x .

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

Сделаем акцент на том, что навык сокращения рациональных дробей зависит от умения раскладывать многочлены на множители.

Понравилась статья? Поделиться с друзьями:
Семейный портал